Lesson 20. Bounds and the Dual LP

1 Overview

- It is often useful to quickly generate lower and upper bounds on the optimal value of an LP
- Many algorithms for optimization problems that consider LP "subproblems" rely on this
- How can we do this?

2 Finding lower bounds

Example 1. Consider the following LP:

 $z^* = \text{maximize} \quad 2x_1 + 3x_2 + 4x_3$

subject to $3x_1 + 2x_2 + 5x_3 \le 18$ (1)

 $5x_1 + 4x_2 + 3x_3 \le 16 \tag{2}$

 $x_1, x_2, x_3 \ge 0$ (3)

Denote the optimal value of this LP by z^* . Give a feasible solution to this LP and its value. How does this value compare to z^* ?

Feasible Solution	Value			

- For a maximization LP, any feasible solution gives a lower bound on the optimal value
- We want the highest lower bound possible (i.e. the lower bound closest to the optimal value)

3 Finding upper bounds

- We want the lowest upper bound possible (i.e. the upper bound closest to the optimal value)
- For the LP in Example 1, we can show that the optimal value z^* is at most 27
 - Any feasible solution (x_1, x_2, x_3) must satisfy constraint (1)
 - \Rightarrow Any feasible solution (x_1, x_2, x_3) must also satisfy constraint (1) multiplied by 3/2 on both sides:

• The nonnegativity bounds (3) imply that any feasible solution (x_1, x_2, x_3) must satisfy

- Therefore, any feasible solution, including the optimal solution, must have value at most 27
- We can do better: we can show $z^* \leq 25$:
 - Any feasible solution (x_1, x_2, x_3) must satisfy constraints (1) and (2)
 - ⇒ Any feasible solution (x_1, x_2, x_3) must also satisfy $\left(\frac{1}{2} \times \text{constraint (1)}\right)$ + constraint (2):

• The nonnegativity bounds (3) then imply that any feasible solution (x_1, x_2, x_3) must satisfy

Example 2. Combine the constraints (1) and (2) of the LP in Example 1 to find a better upper bound on z^* than 25.

- Let's generalize this process of combining constraints
- Let y_1 be the "multiplier" for constraint (1), and let y_2 be the "multiplier" for constraint (2)
- We require $y_1 \ge 0$ and $y_2 \ge 0$ so that multiplying constraints (1) and (2) by these values keeps the inequalities as " \le "
- We also want:

- Since we want the lowest upper bound, we want:
- Putting this all together, we can find the multipliers that find the best lower upper bound with the following LP!

minimize
$$18y_1 + 16y_2$$

subject to $3y_1 + 5y_2 \ge 2$
 $2y_1 + 4y_2 \ge 3$
 $5y_1 + 3y_2 \ge 4$
 $y_1 \ge 0, y_2 \ge 0$

- This is the dual LP, or simply the dual of the LP in Example 1
- The LP in example is referred to as the primal LP or the primal the original LP

4 In general...

- Every LP has a dual
- For minimization LPs
 - Any feasible solution gives an upper bound on the optimal value
 - One can construct a dual LP to give the greatest lower bound possible
- We can generalize the process we just went through to develop some mechanical rules to construct duals

5 Constructing the dual LP

- 0. Rewrite the primal so all variables are on the LHS and all constants are on the RHS
- 1. Assign each primal constraint a corresponding dual variable (multiplier)
- 2. Write the dual objective function
 - The objective function coefficient of a dual variable is the RHS coefficient of its corresponding primal constraint
 - The dual objective sense is the opposite of the primal objective sense
- 3. Write the dual constraint corresponding to each primal variable
 - The dual constraint LHS is found by looking at the coefficients of the corresponding primal variable ("go down the column")
 - The dual constraint RHS is the objective function coefficient of the corresponding primal variable
- 4. Use the **SOB rule** to determine dual variable bounds ($\geq 0, \leq 0$, free) and dual constraint comparisons ($\leq, \geq, =$)

	max LP	\leftrightarrow	min LP	
sensible	\leq constraint	\leftrightarrow	$y_i \ge 0$	sensible
odd	= constraint	\leftrightarrow	y_i free	odd
bizarre	\geq constraint	\leftrightarrow	$y_i \leq 0$	bizarre
sensible	$x_i \ge 0$	\leftrightarrow	\geq constraint	sensible
odd	x_i free	\leftrightarrow	= constraint	odd
bizarre	$x_i \leq 0$	\leftrightarrow	\leq constraint	bizarre

Example 3. Take the dual of the following LP:

minimize
$$10x_1 + 9x_2 - 6x_3$$

subject to $2x_1 - x_2 \ge 3$
 $5x_1 + 3x_2 - x_3 \le 14$
 $x_2 + x_3 = 1$
 $x_1 \ge 0, x_2 \le 0, x_3 \ge 0$

Example 4. Take the dual of the dual LP you found in Example 3.

- In general, the dual of the dual is the primal
- 6 Up next...
 - Duality theorems: relationships between the primal and dual LPs