Lesson 20. Bounds and the Dual LP

1 Overview

- It is often useful to quickly generate lower and upper bounds on the optimal value of an LP
- Many algorithms for optimization problems that consider LP "subproblems" rely on this
- How can we do this?

2 Finding lower bounds

Example 1. Consider the following LP:

$$
\begin{align*}
z^{*}=\text { maximize } & 2 x_{1}+3 x_{2}+4 x_{3} \\
\text { subject to } & 3 x_{1}+2 x_{2}+5 x_{3} \leq 18 \tag{1}\\
& 5 x_{1}+4 x_{2}+3 x_{3} \leq 16 \tag{2}\\
& x_{1}, x_{2}, x_{3} \geq 0 \tag{3}
\end{align*}
$$

Denote the optimal value of this LP by z^{*}. Give a feasible solution to this LP and its value. How does this value compare to z^{*} ?

Feasible Solution	Value

- For a maximization LP, any feasible solution gives a lower bound on the optimal value
- We want the highest lower bound possible (i.e. the lower bound closest to the optimal value)

3 Finding upper bounds

- We want the lowest upper bound possible (i.e. the upper bound closest to the optimal value)
- For the LP in Example 1, we can show that the optimal value z^{*} is at most 27
- Any feasible solution (x_{1}, x_{2}, x_{3}) must satisfy constraint (1)
\Rightarrow Any feasible solution $\left(x_{1}, x_{2}, x_{3}\right)$ must also satisfy constraint (1) multiplied by $3 / 2$ on both sides:
- The nonnegativity bounds (3) imply that any feasible solution (x_{1}, x_{2}, x_{3}) must satisfy
- Therefore, any feasible solution, including the optimal solution, must have value at most 27
- We can do better: we can show $z^{*} \leq 25$:
- Any feasible solution (x_{1}, x_{2}, x_{3}) must satisfy constraints (1) and (2)
\Rightarrow Any feasible solution $\left(x_{1}, x_{2}, x_{3}\right)$ must also satisfy $\left(\frac{1}{2} \times\right.$ constraint (1) $)+$ constraint (2):
- The nonnegativity bounds (3) then imply that any feasible solution $\left(x_{1}, x_{2}, x_{3}\right)$ must satisfy

Example 2. Combine the constraints (1) and (2) of the LP in Example 1 to find a better upper bound on z^{*} than 25.

- Let's generalize this process of combining constraints
- Let y_{1} be the "multiplier" for constraint (1), and let y_{2} be the "multiplier" for constraint (2)
- We require $y_{1} \geq 0$ and $y_{2} \geq 0$ so that multiplying constraints (1) and (2) by these values keeps the inequalities as " $\leq "$
- We also want:
- Since we want the lowest upper bound, we want:
- Putting this all together, we can find the multipliers that find the best lower upper bound with the following LP!

$$
\begin{array}{ll}
\operatorname{minimize} & 18 y_{1}+16 y_{2} \\
\text { subject to } & 3 y_{1}+5 y_{2} \geq 2 \\
& 2 y_{1}+4 y_{2} \geq 3 \\
& 5 y_{1}+3 y_{2} \geq 4 \\
& y_{1} \geq 0, y_{2} \geq 0
\end{array}
$$

- This is the dual LP, or simply the dual of the LP in Example 1
- The LP in example is referred to as the primal LP or the primal - the original LP

4 In general...

- Every LP has a dual
- For minimization LPs
- Any feasible solution gives an upper bound on the optimal value
- One can construct a dual LP to give the greatest lower bound possible
- We can generalize the process we just went through to develop some mechanical rules to construct duals

5 Constructing the dual LP

0 . Rewrite the primal so all variables are on the LHS and all constants are on the RHS

1. Assign each primal constraint a corresponding dual variable (multiplier)
2. Write the dual objective function

- The objective function coefficient of a dual variable is the RHS coefficient of its corresponding primal constraint
- The dual objective sense is the opposite of the primal objective sense

3. Write the dual constraint corresponding to each primal variable

- The dual constraint LHS is found by looking at the coefficients of the corresponding primal variable ("go down the column")
- The dual constraint RHS is the objective function coefficient of the corresponding primal variable

4. Use the SOB rule to determine dual variable bounds ($\geq 0, \leq 0$, free) and dual constraint comparisons ($\leq, \geq,=$)

	max LP	\leftrightarrow	\min LP	
sensible	\leq constraint	\leftrightarrow	$y_{i} \geq 0$	sensible
odd	$=$ constraint	\leftrightarrow	y_{i} free	odd
bizarre	\geq constraint	\leftrightarrow	$y_{i} \leq 0$	bizarre
sensible	$x_{i} \geq 0$	\leftrightarrow	\geq constraint	sensible
odd	x_{i} free	\leftrightarrow	$=$ constraint	odd
bizarre	$x_{i} \leq 0$	\leftrightarrow	\leq constraint	bizarre

Example 3. Take the dual of the following LP:

$$
\begin{array}{ll}
\operatorname{minimize} & 10 x_{1}+9 x_{2}-6 x_{3} \\
\text { subject to } & 2 x_{1}-x_{2} \quad \geq 3 \\
& 5 x_{1}+3 x_{2}-x_{3} \leq 14 \\
& x_{2}+x_{3}=1 \\
& x_{1} \geq 0, x_{2} \leq 0, x_{3} \geq 0
\end{array}
$$

Example 4. Take the dual of the dual LP you found in Example 3.

- In general, the dual of the dual is the primal

6 Up next...

- Duality theorems: relationships between the primal and dual LPs

